

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY :: PUTTUR (AUTONOMOUS)

Siddharth Nagar, Narayanavanam Road – 517583

QUESTION BANK(DESCRIPTIVE)

Subject with Code : Formal Languages and Automata Theory (19CS0509)Course & Branch: B.Tech - CSEYear & Sem: II-B.Tech & II-SemRegulation: R19

	1								[]
1	a	Consider the below finite automata and check whether the strings are					;	[L1][CO1]	[8M]
		accepted or not.							
			States	Input A	Iphabtes				
			(Q)	0	1				
			→q0	q1	q3				
			q1	q0	q2				
			(q2)	q 3	q1				
			q3	q 2	q0				
		(i) 0001	(ii) 1010 (i	ii) 1001	(iv)0101				
	b	Compare DFA ar	nd NFA.					[L2][CO1]	[4M]
2	a	Define Grammar.	. Construct the	e Grammar	for the langua	age $a^n b^n$, $n > 0$.		[L3][CO1]	[4M]
	b	Define Language	c. Construct a	language ge	nerated from	the given G.		[L3][CO1]	[4M]
		$S \rightarrow aSb / \varepsilon$							
	c	Design DFA whi	ich accepts ev	en number	of 0's and od	ld number of	f 0's	[L6][CO1]	[4M]
		over {0, 1}.							
3		Convert the following NFA with ε moves to DFA without ε moves by ε -					у ε-	[L3][CO1]	[12M]
		closure method.							
		Start							
		Start \rightarrow q \rightarrow r \rightarrow s							
4								II 41(001)	F 4D 4 0
4	a	Contrast Mealy n	nachine and N	loore machi	ne.			[L4][C01]	[4M]
	b	Convert the follow	ving Mealy mac	hine into its	equivalent Mo	ore machine		[L3][CO1]	[6M]
		Convert the following Mealy machine into its equivalent Moore machine.							
		Present I/P=0 I/P=1							
		State	Next State	O/P	Next State	O/P			
		→A	С	0	В	0			
		В	А	1	D	0			
		С	В	1	А	1			
		D	D	1	С	0			
						1	l		
		1							

<u>UNIT –I</u> INTRODUCTION, FINITE AUTOMATA

Course Code: 19CS0509

Cour	se Co	ode: 19CS0509						R19
	c	Construct Mealy machine corresponding to Moore machine?					[L3][CO1]	[2M]
		States	Next S	States	0.1.1	1		
		(Q)	I/P=0	I/P=1	Output			
		→q1	q1	q2	0]		
		q2	q1	q3	0]		
		q3	q1	q3	1			
5	а	Analyze and explain with	example ([homsky]	Hierarchy.		[L4][CO1]	[6M]
5	b	Design DFA which accep			-		[L6][C01]	[6M]
6	a	State what is meant by fin				plications and	[L3][C01]	[6M]
		Limitations FA.			I	1		
	b	Construct DFA for the give	ven NFA				[L6][CO1]	[6M]
				Next st				
				0	1			
		$\rightarrow q q$) q	0,q1	q0			
		q	1 q.	2	q1			
		q	2 q.	3	q3			
		(q:	3) -		q2			
7	_		~					F 4 N 47
7	а	Write why minimization of finite automata is required and explain the procedure adapted for minimization of finite automata in Table filling			[L5][CO1]	[4M]		
		method.						
	b	Minimize the following automata.				[L3][CO1]	[8M]	
		b 1 d 1 f $0, 10$ 0 1 f) o		
8	a	Describe Finite Automata	with Outp	out.			[L2][CO1]	[6M]
	b	Design a Moore machine binary string treated as bin	which de	termines t	he residue	mod-3 for each	[L6][CO1]	[6M]
9	a	Define relations on sets an	-			example.	[L1][CO1]	[6M]
	b	Differences between DFA	and NFA	with example and the second se	nples.		[L4][C01]	[6M]
10		Write down procedure f Nerode theorem with a gi		-			[L3][CO1]	[12M]
				Next S				
		Present State	I/P=		I/P=b			
		$\longrightarrow A$ B	B A		F F			
		C	G		A			
		D	Н		В			
		E	A		G			
		*F	H		<u> </u>			
		*G *H	A A		D C			
		11	A		C			

<u>UNIT –II</u> <u>REGULAR LANGUAGES</u>

1	0	List out the identities of Peqular expression	[1,1][CO2]	[6M]
1	a b	List out the identities of Regular expression.	[L1][CO2]	[6M]
	D	From the identities of RE, prove that i) 10+(1010)*[^+(1010)*]=10+(1010)*	[L3][CO2]	[6M]
		i) $(1+100^*)+(1+100^*)(0+10^*)(0+10^*)=10^*(0+10^*)^*$.		
2	a	Construct an equivalent FA for the given regular expression	[L3][CO2]	[06M]
2	a	$(0+1)^*(00+11)(0+1)^*$.		
	b	State Arden's theorem and construct the regular expression for the	[L3][CO2]	[06M]
	Ũ	following FA using Arden's theorem.	[10][002]	[0011]
		b		
		b (q ₃)		
		b		
		a la		
3	a	Convert the given RG to FA.	[L3][CO2]	[6M]
		$S \rightarrow aA/bB/a/b$		
		$A \rightarrow aS/bB/b$		
	1	$B \rightarrow aA/Bs$		
	b	Construct an equivalent FA for the given regular expression. $10 + (0 + 11) 0^* 1$	[L6][CO2]	[6M]
4		Write the process of equivalence two FA's? Compare the equivalence of	[L4][CO2]	[12M]
		two FA's or not.		
		c d		
		d		
		d d d c c		
		d		
5	a	Prove R=Q+RP has unique solution, R=QP*.	[L3][CO2]	[4M]
	b	Construct RE from given FA by using Arden's Theorem.	[L6][CO2]	[8M]
		0 1		
		\rightarrow $(q0)$ $(q1)$ $(q2)$ $(q2)$		
		$\prec \smile \succ$		
		\bigcirc		
		υ, 1		
6		Explain about Arden's theorem, for constructing the RE from a FA with	[L6][CO2]	[12M]
		an example.		

			-	
7	a	Give the Closure properties of Regular Sets.	[L1][CO2]	[6M]
	b	Explain how equivalence between two FA is verified with example.	[L2][CO2]	[6M]
8	a	Define Regular expressions. List its Applications.	[L1][CO2]	[4M]
	b	Compare and prove that the following regular expressions are equivalent.	[L4][CO2]	[8M]
		L1 = 1*(011)*(1*(011)*)* L2 = (1+011)*		
9	2	$L2 = (1+011)^{+}$ State Pumping lemma for regular languages.	[L1][CO2]	[4M]
7	a 1			
	b	Prove that $L = \{a^i b^i \mid i \ge 0\}$ is not regular	[L3][CO2]	[8M]
10	а	Prove that the language $L = \{a^nb^n \mid n \ge 1\}$ is not regular using pumping	[L3][CO2]	[8M]
		lemma.		
	b	Write Closure properties of regular language and applications of Pumping Lemma?	[L1][CO2]	[4M]

R19

<u>UNIT –III</u> CONTEXT FREE GRAMMAR

-	r –			- 43
1	a	State what is meant by derivation and parse tree with examples.	[L1][CO3]	[4M]
	b	Construct Leftmost, Rightmost derivation and derivation tree for the	[L6][CO3]	[8M]
		string 0100110.		
		S→0S/1AA		
		A→0/1A/0B		
		B→1/0BB		
2	a	Define Ambiguous grammar with an examples.	[L1][CO3]	[4M]
	b	Remove Left recursion from the grammar.	[L3][CO3]	[8M]
		E→E+T/T		
		$T \rightarrow T^*F/F$		
2	0	F→(E)/id	[L 2][CO2]	[c] / []
3	a 1.	Explain Left recursion and Left factoring.	[L2][CO3]	[6M]
4	b	Perform left factor for the grammar A→abB/aB/cdg/cdeB/cdfB.	[L3][CO3]	[6M]
4	a 1	Describe Simplification of the context free grammar.	[L2][CO3]	[4M]
	b	Evaluate simplification of the grammar for the following context free	[L5][CO3]	[8M]
		grammar. S→ AaB/aaB		
		$A \rightarrow D$		
		B→bbA/ €		
		D→E		
		E→F		
		F→aS		
5	a	Write the process adapted to convert the grammar into CNF?	[L2][CO3]	[4M]
	b	Convert the following grammar into CNF.	[L3][CO3]	[8M]
		$S \rightarrow bA/aB$		
		$A \rightarrow bAA/aS/a$		
6		$B \rightarrow aBB/bS/a.$	<u>[]</u>	
6	a 1	Define Greibach Normal Form.	[L1][CO3]	[2M]
	b	Convert the following grammar into Greibach Normal Form.	[L3][CO3]	[10 M]
		S→AA/a		
		A→SS/b		
7	а	Define the following terms:	[L1][CO3]	[8M]
		i) Useless symbol		
		ii) Null production		
	1	iii) Unit productions		10.0
0	b	List the closure properties of CFLs.	[L1][CO3]	[4M]
8		Interpret simplification of the given grammar. Simplify the following	[L5][CO3]	[12M]
		CFG.		
		$S \rightarrow aSb S \rightarrow A A \rightarrow cAd A \rightarrow cd$		
9	а	Remove the unit production from the grammar.	[L3][CO3]	[6M]
		$S \rightarrow AB A \rightarrow E B \rightarrow C C \rightarrow D D \rightarrow b E \rightarrow a$		
	b	Remove ϵ productons from the grammar.	[L3][CO3]	[6M]
		$S \rightarrow ABaC A \rightarrow BC B \rightarrow b/\epsilon C \rightarrow D/\epsilon D \rightarrow d$		
10	a	State Pumping lemma for Context-free language.	[L1][CO3]	[4M]
	b	Show that $L = \{a^nb^nc^n, where n \ge 1\}$ is not context free.	[L3][CO3]	[8M]
	0	Show that $D = \{u \in \mathcal{C}, where m = 1\}$ is not context free.		[011]

	r			
1	a	A PDA is more powerful than a finite automaton. Justify this statement.	[L6][CO4]	[4M]
	b	Construct a PDA which recognizes all strings that contain equal number	[L6][CO4]	[8M]
		of 0's and 1's.		
2	a	Define Instantaneous description (ID) in PDA.	[L1][CO4]	[6M]
	b	Define push down automata? Explain acceptance of PDA with	[L2][CO4]	[6M]
		final state.		
3	a	Define PDA? Explain graphical notation of PDA.	[L2][CO4]	[6M]
	b	Explain acceptance of PDA with empty stack.	[L5][CO4]	[6M]
4	а	Construct an equivalent PDA for the following CFG.	[L6][CO4]	[6M]
		S→aAB bBA		
		A→bS a		
		$B \rightarrow aS \mid b.$		
	b	Describe acceptance of PDA.	[L6][CO4]	[6M]
5		Construct a PDA to accept the language $L = \{a^n b^{2n}, n \ge 1\}$ by empty	[L6][CO4]	[12M]
		stack and final state.		
6	a	State Push Down Automata.	[L1][CO4]	[2M]
	b	Construct a NPDA to accept the language $L=\{WW^R / W \in (a,b)^*\}$ by	[L6][CO4]	[10M]
		empty stack and final state.		
7		Construct PDA from the following Grammar.		
		(i) $S \rightarrow aB B \rightarrow bA/b A \rightarrow aB$ (ii) $S \rightarrow aB B \rightarrow aB AB AB B \rightarrow aB AB AB AB AB AB AB AB $		56.00
0		(ii) $S \rightarrow 0BB B \rightarrow 0S / 1S/0$		[6+6M]
8		Construct a DPDA to accept the language $L=\{WCW^R / W \in (a,b)^+\}$ by	[L6][CO4]	[12M]
		empty stack and final state.		
9		Write the process adapted and convert the given PDA into an	[L3][CO4]	[12M]
		equivalent CFG.		
		$\delta(q_0,a_0,z_0) \rightarrow (q_1,z_1z_0)$		
		$\delta(\mathbf{q}_0,\mathbf{b},\mathbf{z}_0) \rightarrow (\mathbf{q}_1,\mathbf{z}_2\mathbf{z}_0)$		
		$\delta(q_1, a, z_1) \rightarrow (q_1, z_1 z_1)$		
		$\delta(q_1, b, z_1) \rightarrow (q_1, \lambda)$		
		$\delta(q_1, b, z_2) \rightarrow (q_1, z_2 z_2)$		
		$\delta(q_1, a, z_2) \rightarrow (q_1, \lambda)$		
10		$\delta(q_1, \lambda, z_2) \rightarrow (q_1, \lambda) //$ accepted by the empty stack.		[12]
10		Construct a PDA that recognizes balanced parentheses.	[L6][CO4]	[12M]

<u>UNIT –V</u>
TURING MACHINES AND UNDECIDABILITY

1	a	Describe Instantaneous Description of Turing Mach	ine.	[L2][CO5]	[6M]
	b	Explain about the graphical notation of TM.		[L3][CO5]	[6M]
2		Construct a Turing machine which multiplies two un	[L6][CO5]	[12M]	
3	a	Explain the procedure adapted to convert RE to TM.	[L2][CO5]	[6M]	
	b	Convert the given regular Expression (a+b)*(aa+bb)(a+b)* to TM.			[6M]
4		Construct a Turing machine that recognizes the	language $L = \{a^n \ b^n,$	[L6][CO5]	[12M]
		$n>1$ }. Show an ID for the string 'aaabbb' with tape s	symbols.		
5		Explain the various types of Turing machine.		[L2][CO5]	[12M]
6		Design a Turing Machine to accept the set of a	all palindrome over	[L6][CO5]	[12M]
		$\{0,1\}^*$. Draw the transition diagram for the same.			
7	a	Discriminate Universal Turing machine.		[L5][CO5]	[6M]
	b	Illustrate Linear Bounded Automta.		[L2][CO6]	[6M]
8	a	Differentiate PCP and MPCP.		[L4][CO6]	[6M]
	b	Find the PCP solution for the following sets.	solution for the following sets.		
		A B			
		10 101			
		01 100			
		0 10			
		100 0			
		1 010			
9	a	Define PCP. Verify whether the following lists have	a PCP solution.	[L5][CO6]	[6M]
		$\begin{pmatrix} abab\\ ababaaa \end{pmatrix}, \begin{pmatrix} aaabbb\\ bb \end{pmatrix}, \begin{pmatrix} aab\\ baab \end{pmatrix}, \begin{pmatrix} ba\\ baa \end{pmatrix}, \begin{pmatrix} ab\\ baa \end{pmatrix}$			
	b	Illustrate Linear Bounded Automata.	[L2][CO6]	[6M]	
10		Define Mathematical Definition of Turing Machine.	Describe Recursive	[L2][CO6]	[12M]
		and Recursively Enumerable Languages.			

Prepared by: 1. Mrs. R.M.MALLIKA Associate Professor/CSE 2. Mr. P.NAGARAJU Associate Professor/CSE

R19